
7 Planar systems of linear ODE

Here I restrict my attention to a very special class of autonomous ODE: linear ODE with constant
coefficients. This is arguably the only class of ODE for which explicit solution can always be con-
structed. Linear systems considered as mathematical models of biological processes are of limited use;
however, such models still can be used to describe the dynamics of the system during the stages when
the interactions between the elements of the system can be disregarded. Moreover, the analysis of the
linear systems is a necessary step in analysis of a local behavior of nonlinear systems (linearization of
the system in a neighborhood of an equilibrium).

7.1 General theory

The linear system of first order ODE with constant coefficients on the plane has the form

ẋ1 = a11x1 + a12x2,

ẋ2 = a21x2 + a22x2,
(1)

or, in the vector notations,
ẋ = Ax, x(t) ∈ R2, (2)

where x = (x1, x2)
⊤, and A = (aij)2×2 is a matrix with real entries:

A =

[
a11 a12
a21 a22

]
.

Additionally to (2), consider also the initial condition

x(0) = x0. (3)

To present the solution to (2)–(3), I first prove

Proposition 1. Initial value problem (2)–(3) is equivalent to the solution of the integral equation

x(t) = x0 +

∫ t

0
Ax(ξ) dξ. (4)

Proof. Assume that x solves (4). Then, by direct inspection I have that x(0) = x0. Moreover,
since the right-hand side is given by the integral this implies that x ∈ C(1), therefore, I can take the
derivative to find (2). Now other way around, by assuming that x solves (2)–(3), integrating (2), and
evaluating the constant of integration, I recover (4). �

Now I can use (4) to approximate the solution to (2)–(3) by the method of successive iterations.
The first approximation is of course the initial condition x0:

x1(t) = x0 +

∫ t

0
Ax0 dξ = x0 +Ax0t.
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Next,

x2(t) = x0 +

∫ t

0
Ax1(ξ) dξ = x0 +Ax0t+

A2x0t
2

2
.

Or, continuing the process,

xn(t) =

(
I +

At

1!
+

A2t2

2!
+ . . .+

Antn

n!

)
x0.

Here I is the identity matrix. Please note that what is inside the parenthesis in the last formula is
actually a matrix. However, the expression is so suggestive, given that you remember the Taylor series
for the ordinary exponential function,

exp(t) = et = 1 +
t

1!
+

t2

2!
+ . . .+

tn

n!
+ . . . ,

that it is impossible to resist the temptation to make

Definition 2. The matrix exponent of the matrix A is defined as the infinite series

exp(A) = eA = I +
A

1!
+

A2

2!
+ . . .+

An

n!
+ . . . (5)

This definition suggests that the solution to the integral equation (4), and, therefore, to the IVP
(2)–(3), is of the form

x(t) = eAtx0,

note that here I have to write x0 on the right to make sure all the operations are well defined. Before
continuing the analysis of the linear system and actually proving that indeed the solution is given by
the presented formula, I have to make sure that the given definition makes sense, i.e., all the usual
series (there are four of them if matrix A is 2× 2) converge.

Proposition 3. Series (5) converges absolutely.

Proof. Let |aij | ≤ a. For the product AA = A2 I have that the elements of this product are bonded
by 2a2. Similarly, for Ak it is 2k−1ak = 2kak/2. Since I have that

1

2

∞∑
k=0

2kak

k!
=

1

2
e2a,

therefore the series in (5) converges absolutely to the matrix denoted eA. �

Now it is quite straightforward to prove that exp(At) solves (2).

Proposition 4.
d

dt
eAt = AeAt.

Proof. Since the series converges absolutely, I am allowed to differentiate the series termwise:

d

dt

∞∑
k=0

Aktk

k!
=

∞∑
k=0

d

dt

Aktk

k!
=

∞∑
k=1

Aktk−1

(k − 1)!
= AeAt.

�
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The last proposition indicates that the matrix exponent has some properties similar to the usual
exponent. Here is a good example to be careful when dealing with the matrix exponent.

Example 5. Consider two matrices,

A =

[
0 1
0 0

]
, B =

[
0 0
−1 0

]
.

I claim that
eA+B ̸= eAeB.

Let me prove it. I have
A2 = 0,

therefore

eA = I +A =

[
1 1
0 1

]
.

Similarly,

eB = I +B =

[
1 0
−1 1

]
.

Therefore,

eAeB =

[
0 1
−1 1

]
.

Now

C = A+B =

[
0 1
−1 0

]
.

I have

C2 =

[
−1 0
0 −1

]
= −I, C3 =

[
0 −1
1 0

]
= −C, C4 =

[
1 0
0 1

]
= I.

Therefore,

eC =

[
1− 1

2! +
1
4! + . . . 1− 1

3! +
1
5! + . . .

−1 + 1
2! −

1
4! + . . . 1− 1

2! +
1
4! + . . .

]
=

[
cos 1 sin 1
− sin 1 cos 1

]
,

which proves that eA+B ̸= eAeB.
In the last expression I used

cos t =
∞∑
k=0

(−1)k
t2k

(2k)!
, sin t =

∞∑
k=1

(−1)k−1 t2k−1

(2k − 1)!
.

Proposition 6. If
[A,B] = AB −BA = 0,

i.e., if matrices A and B commute, then

e(A+B)t = eAteBt.
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Proof. For the matrices that commute the binomial theorem holds:

(A+B)n =

n∑
k=0

(
n

k

)
An−kBk = n!

∑
i+j=n

Ai

i!

Bj

j!
.

Since, by the Cauchy product( ∞∑
i=0

Ai

i!

) ∞∑
j=0

Bj

j!

 =
∞∑
n=0

∑
i+j=n

Ai

i!

Bj

j!
,

one has

eAeB =

∞∑
n=0

∑
i+j=n

Ai

i!

Bj

j!
=

∞∑
n=0

(A+B)n

n!
= eA+B.

I can do these formal manipulations since all the series in the question converge absolutely. �

As an important corollary of the last proposition I have

Corollary 7. For the matrix exponent

eA(t1+t2) = eAt1eAt2 ,

and
eAte−At = I.

Proof. For the first note that At1 and At2 commute. For the second put t1 = t and t2 = −t. �

Now I can actually prove that the solution to (2)–(3) exists, unique, and defined for all −∞ < t <
∞.

Theorem 8. Solution to the IVP problem (2)–(3) is unique and given by

x(t;x0) = eAtx0, −∞ < t < ∞. (6)

Proof. First, due to Proposition 4,
d

dt
eAtx0 = AeAtx0,

and also eA0x0 = Ix0 = x0, which proves that (6) is a solution. To prove that it is unique, consider
any solution x of the IVP and put

y(t) = e−Atx(t).

I have

ẏ(t) = −AeAtx(t) + e−Atẋ(t)

= −AeAtx(t) + e−AtAx = 0.
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In the expression above, I used two (non-obvious) facts: First, that the usual product rule is still true
for the derivative of the product of two matrices, and that

e−AtA = Ae−At,

i.e., that matrices A and e−At commute. You should fill in the details of the proofs of these statements.
Hence I have that y(t) = C, therefore, by setting t = 0, I find y(0) = x0, which implies that any

solution is given by
x(t) = eAtx0.

Since the last formulae is defined for any t, therefore, the solution is defined for −∞ < t < ∞. �

7.2 Three main matrices and their phase portraits

Consider the solutions to (2) and their phase portraits for three matrices:

A1 =

[
λ1 0
0 λ2

]
, A2 =

[
λ 1
0 λ

]
, A3 =

[
α β
−β α

]
,

where λ1, λ2, λ, α, β are real numbers.

• A1. I have, using the definition of the matrix exponent, that

eA1t =

[
eλ1t 0
0 eλ2t

]
,

therefore the general solution to (2) is given (which can be actually obtained directly, by noting
that the equations in the system are decoupled)

x(t;x0) =

[
eλ1t 0
0 eλ2t

]
x0 =

[
eλ1tx01
eλ2tx02

]
.

If λ1 ̸= 0 and λ2 ̸= 0 then I have only one isolated equilibrium x̂ = (0, 0), the phase curves can
be found as solutions to the first order ODE

dx2
dx1

=
λ2x2
λ1x1

,

which is separable equation, and the directions on the orbits are easily determined by the signs
of λ1 and λ2 (i.e., if λ1 < 0 then x1(t) → 0 as t → ∞).

Consider a specific example with 0 < λ1 < λ2. In this case I have that all the orbits are
parabolas, and the direction is from the origin because both lambdas are positive. The only
tricky part here is to determine which axis the orbits approach as t → −∞, this can be done
by looking at the explicit equations for the orbits (you should do it) or by noting that when
t → −∞ eλ1t ≫ eλ2t and therefore x1 component dominates in a small enough neighborhood of
(0, 0) (see the figure). The obtained phase portrait is called topological node (“topological” is
often dropped), and since the arrows point from the origin, it is unstable (I will come back to
the discussion of the stability a little later).
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x1

x2

Figure 1: Unstable node in system (2) with matrix A1. The eigenvectors v1 and v2 coincide with the
directions of x1-axis and x2-axis respectively

As another example consider the case when λ2 < 0 < λ1. In this case (prove it) the orbits are
actually hyperbolas on (x1, x2) plane, and the directions on them can be identifies by noting
that on x1-axis the movement is from the origin, and on x2-axis it is to the origin. Such phase
portrait is called saddle. All the orbits leave a neighborhood of the origin for both t → ±∞
except for five special orbits: first, this is of course the origin itself, second two orbits on x1-axis
that actually approach the origin if t → −∞, and two orbits on x2-axis, which approach the
origin if t → ∞. The orbits on x1-axis form the unstable manifold of x̂ = (0, 0), and the orbits
on x2-axis form the stable manifold of x̂. These orbits are also called the saddle’s separatrices
(singular, separatrix ).

There are several other cases, which need to be analyzed, let me list them all:

– 0 < λ1 < λ2: unstable node (shown in figure)

– 0 < λ2 < λ1: unstable node

– 0 < λ1 = λ2: unstable node

– λ1 < λ2 < 0: stable node

– λ2 < λ1 < 0: stable node

– λ1 = λ2 < 0: stable node

– λ1 < 0 < λ2: saddle

– λ2 < 0 < λ1: saddle (shown in figure)

You should sketch the phase portraits for each of these cases. Also keep in mind that for now I
exclude cases when one or both λ’s are zero.
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x1

x2

Figure 2: Saddle in system (2) with matrix A1. Eigenvectors v1 and v2 coincide with the directions
of x1-axis and x2-axis respectively

• A2. To find eA2t I will use the fact that

A2 =

[
λ 0
0 λ

]
+

[
0 1
0 0

]
and these two matrices commute. The matrix exponent for the first matrix was found in the
previous point, and for the second it is readily seen that

exp

[
0 1
0 0

]
t =

[
1 t
0 1

]
.

Therefore,

eA2t = eλt
[
1 t
0 1

]
.

Assume that λ < 0 (the cases λ = 0 and λ > 0) left as exercises. Now, first, we see that
x(t;x0) → 0 as t → ∞, moreover,

dx2
dx1

→ 0

as t → ∞, therefore the orbits should be tangent to x1-axis. The figure is given below, the phase
portrait is sometimes called the improper stable node.

• A3. Here I will use

A3 =

[
α 0
0 α

]
+

[
0 β
−β 0

]
as two commuting matrices to find

eA3t = eαt
[
cosβt sinβt
− sinβt cosβt

]
.
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x1

x2

Figure 3: Improper node in system (2) with matrix A2. Vector v1 coincides with the direction of
x1-axis

Hence the flow of the system (2) is given by

x(t;x0) = eA3tx0 = eαt
[
cosβt sinβt
− sinβt cosβt

]
x0.

To determine the phase portrait observe that if α < 0 then all the solutions will approach the
origin, and if α > 0, they will go away from origin. We also have components of eA3t which are
periodic functions of t, which finally gives us the whole picture: if α < 0 and β > 0 then the
orbits are the spirals approaching origin clockwise, if α > 0 and β > 0 then the orbits are spiral
unwinding from the origin clockwise, and if α = 0 then the orbits are closed curves. Here is an
example for α < 0 and β < 0, this phase portrait is called the stable focus (or spiral).

If I take α = 0 and β < 0 then the phase portrait is composed of the closed curves and called
the center (recall the Volterra–Lotka model). See the figure.

To determine the direction on the orbits, I can use the original vector field. For example, in the
case α = 0 β < 0 I have that for any point x1 = 0 and x2 > 0 the derivative of x2 is negative,
and therefore the direction is counter-clockwise.

7.3 A little bit of linear algebra

So why actually did I spend so much time on studying three quite simple particular matricesA1,A2,A3?
It is because the following theorem is true:

Theorem 9. Let A be a 2 × 2 real matrix. Then there exists a real invertible 2 × 2 matrix P such
that

P−1AP = J ,
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x1

x2

x1

x2

Figure 4: Left: Stable focus (spiral) and right: center in system (2) with matrix A3

where matrix J is one of the following three matrices in Jordan’s normal form

(a)

[
λ1 0
0 λ2

]
, (b)

[
λ 1
0 λ

]
, (c)

[
α β
−β α

]
.

Before turning to the proof of this theorem, let me discuss how this theorem can be used for the
analysis of a general system (2):

ẋ = Ax, x(t) ∈ R2. (2)

Consider a linear change of variables x = Py for the new unknown vector y. I have

P ẏ = APy,

or
ẏ = P−1APy = Jy,

therefore,
y(t;y0) = eJty0,

where I already know how to calculate eJt. Returning to the original variable, I find that

x(t;x0) = P eJtP−1x0,

full solution to the original problem. Moreover, I also showed that

eAt = P eJtP−1,

which is often used to calculate the matrix exponent. Finally, the phase portraits for x will be similar
to those of y, since the linear invertible transformation amounts to scaling, rotation, and reflection, as
we are taught in the course of linear algebra. The only question is how to find this linear change P .

For this, let me recall
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Definition 10. A nonzero vector v is called an eigenvector of matrix A if

Av = λv,

where λ is called the corresponding eigenvalue.

Generally eigenvalues and eigenvectors can be complex. To find the eigenvalues, I need to find the
roots of the characteristic polynomial

P (λ) = det(A− λI),

which is of the second degree if A is a 2×2 matrix. Once the eigenvalues are found, the corresponding
eigenvectors can be found as solutions to the homogeneous system of linear algebraic equations

(A− λI)v = 0.

Remember that eigenvectors are not unique and determined up to a multiplicative constant. Now I
am in a position to prove Theorem 9. The proof also gives the way to find the transformation P .

Proof of Theorem 9. Since the characteristic polynomial has degree two, it may have either two real
roots, two complex conjugate roots, or one real root multiplicity two.

I assume first that I either have two distinct real roots λ1 ∈ R ̸= λ2 ∈ R with the corresponding
eigenvectors v1 ∈ R2 and v2 ∈ R2 or a real root λ ∈ R multiplicity two which has two linearly
independent eigenvectors v1 ∈ R2 and v2 ∈ R2. Now I consider the matrix P , whose columns are
exactly v1 and v2, I will use the notation

P = (v1|v2).

It is known that the eigenvector corresponding to distinct eigenvalues are linearly independent, hence
P is invertible (can you prove this fact?). Now just note that

AP = (Av1|Av2) = (λ1v1|λ2v2) = PJ ,

which proves the theorem for case (a).
For case (b), assume that there is one real root of characteristic polynomial with the eigenvector

v1. Then there is another vector v2, which satisfies

(A− λI)v2 = v1,

which is linearly independent of v1 (can you prove it?). Now take P = (v1|v2), and

AP = (λv1|v1 + λv2) = PJ ,

where J as in (b).
Finally, in case (c) I have λ1,2 = α± iβ as eigenvalues and the corresponding eigenvectors v1± iv2,

where v1,v2 are real nonzero vectors. Let me take P = (v1|v2). Since

A(v1 + iv2) = (α+ iβ)(v1 + iv2),
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I have
Av1 = αv1 − βv2, Av2 = αv2 + βv1.

Now
AP = (αv1 − βv2|βv1 + αv2) = PJ ,

where J as in (c). The only missing point is to prove that v1 and v2 are linearly independent, which
is left as an exercise. �

Example 11. Consider system (2) with

A =

[
1 3
1 −1

]
.

We find that the eigenvalues and eigenvectors are

λ1 = −2, v⊤
1 = (−1, 1), λ2 = 2, v⊤

2 = (3, 1).

Therefore, the transformation P here is

P =

[
−1 3
1 1

]
,

and

J = P−1AP =

[
−2 0
0 2

]
.

The solution to system
ẏ = Jy,

where y = P−1x is straightforward and given by

y(t;x0) =

[
e−2t 0
0 e2t

]
y0

and its phase portrait has the structure of a saddle (see the figure). To see how actually the phase
portrait looks in x coordinate, consider solution for x, which takes the form

x = Py = (v1e
λ1t|v2e

λ2t)y0 = C1v1e
λ1t + C2v2e

λ2t,

where I use C1, C2 for arbitrary constants. Note that x changing along the straight line with the
direction v1 if C2 = 0, and along the straight line v2 when C1 = 0. The directions of the flow on
these lines coincide with the directions of the flow on the y-axes for the system with the matrix in the
Jordan normal form (see the figure).

This is how we can see the phase portrait for the linear system of two autonomous ODE of the
first order. Not taking into account the cases when one or both eigenvalues are zero, we therefore saw
all possible phase portraits a linear system (2) can have. Now it is time discuss stability.

11



y2

y1 x1

x2

v1

v2

Figure 5: Saddle point after the linear transformation (left), and the original phase portraits (right).
The coordinates are connected by the relation x = Py, where P is defined in the text

7.4 Stability of the linear system (2)

In what follows I will assume that detA ̸= 0, i.e., this means that there is only one isolated equilibrium
of system

ẋ = Ax, x(t) ∈ R2, (2)

which is the origin: x̂ = (0, 0). To define stability of this equilibrium, and therefore stability of the
linear system itself, I need a notion of a neighborhood and distance in the set R2. I will use the
following generalization of the absolute value to vectors x = (x1, x2)

⊤ ∈ R2:

|x| =
(
(x1)

2 + (x2)
2
)1/2

.

Then distance between two vectors x1 ∈ R2 and x2 ∈ R2 is simply

|x1 − x2|.

Using this convenient notation, now I will verbatim repeat my definition of stability of equilibria of
the scalar autonomous ODE. To wit,

Definition 12. An equilibrium x̂ is called Lyapunov stable if for any ϵ > 0 there exists a δ(ϵ) > 0
such that for any initial conditions

|x̂− x0| < δ,

the flow of (2) satisfies
|x̂− x(t;x0)| < ϵ

for any t > t0.
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If, additionally,
|x̂− x(t;x0)| → 0,

when t → ∞, then x̂ is called asymptotically stable.
If for any initial condition x0 the orbit γ(x0) leaves a neighborhood of x̂, then this point is called

unstable.

The analysis of linear systems is simple since I actually have the flow of the system given by

x(t;x0) = eAtx0.

Case by case analysis from this lecture allows me to formulate the following theorem:

Theorem 13. Let detA ̸= 0. Then the isolated equilibrium point x̂ = (0, 0) of planar system (2) is
asymptotically stable if and only if for the eigenvalues of A it is true that Reλ1,2 < 0. If Reλ1,2 = 0
then the origin is Lyapunov stable, but not asymptotically stable (center). If for at least one eigenvalue
it is true that Reλi > 0 then the origin is unstable.

Therefore I can have asymptotically stable nodes, improper nodes, and foci, Lyapunov stable
center, and unstable nodes, improper nodes, foci, and saddles (note that the latter are always unstable).

I can summarize all the information in one parametric portrait of linear system (2). For this it is
useful to consider the characteristic polynomial of A as

P (λ) = λ2 − (a11 + a22)λ+ (a11a22 − a12a21) = λ2 + λ trA+ detA,

where I use the notation trA = a11 + a22 to denote the trace of A. I have

λ1,2 =
trA±

√
(trA)2 − 4 detA

2
,

therefore the condition for the asymptotic stability becomes simply

trA < 0, detA > 0.

Using the trace and determinant as new parameters I can actually present possible linear systems as
in the following figure

7.5 Bifurcations in the linear systems

I came to the main point of this lecture. I have four parameters in linear systems (2), four entries
of matrix A. I can consider variations of these parameters, and the structure of the phase portrait
of the linear system will be changing. For example, if I cross the boundary detA = 0 in the last
figure for negative trA, then the saddle becomes the stable node. Is this a bifurcation in the system?
Or, when crossing the curve detA = 1

4(trA)2 for positive values of trA the unstable focus turns
into the unstable node. Is this change enough to call it a bifurcation? Recall that for the first
order equations the definition of bifurcation was based on the notion of topological equivalence, which
identified equations with the same orbit structure as being topologically equivalent. But now I can
have much richer orbit structures because I am not confined any longer to the phase line, now I am
dealing with the phase plane.
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trA

detA

detA =
(trA)2

4

saddlessaddles

stable nodes unstable nodes

stable foci unstable foci

Figure 6: The type of the linear system depending on the values of trA and detA. The centers here
are situated where detA > 0 and trA = 0

This is a quite complicated subject, therefore, I will mostly state results, proofs can be found
elsewhere.

First, there is a notion of topological equivalence, which includes the one that we already discussed,
as a particular case.

Definition 14. Two planar linear systems ẋ = Ax and ẋ = Bx are called topologically equivalent
if there exists a homeomorphism h : R2 −→ R2 of the plane, that is, h is continuous with continuous
inverse, that maps the orbits of the first system onto the orbits of the second system preserving the
direction of time.

It can be shown that the notion of topological equivalence is indeed an equivalence relation, i.e.,
it divides all possible planar linear system into distinct non-intersecting classes.

The following theorem gives the topological classification of the linear planar system. It is also
convenient to have

Definition 15. An equilibrium x̂ of ẋ = Ax is called hyperbolic if Reλ1,2 ̸= 0, where λ1,2 are the
eigenvalues of A. Matrix A as well as system ẋ = Ax itself are also called hyperbolic in this case.

Theorem 16. Two linear systems with hyperbolic equilibria are topologically equivalent if and only if
the number of eigenvalues with positive real part (and hence the number of eigenvalues with negative
real part) is the same for both systems.

I usually have this large zoo of the equilibria: nodes, saddles, foci, but from topological point of
view there are only three non-equivalent classes of hyperbolic equilibria: with two negative eigenvalues
(a hyperbolic sink), one negative and one positive (a saddle), and with two positive eigenvalues (a
hyperbolic source).

I recommend for a thorough treatment of the subject the following textbook Hale, J. K., & Koçak, H. (2012).
Dynamics and bifurcations. Springer
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Definition 17. A bifurcation is a change of the topological type of the system under parameter vari-
ation.

Now I state the result that asserts that it is impossible to have bifurcations in the linear system
when the equilibrium is hyperbolic.

Proposition 18. Let A be hyperbolic. Then there is a neighborhood U of A in R4 such that for any
B ∈ U system ẋ = Bx is topologically equivalent to ẋ = Ax.

Proof. The eigenvalues as the roots of the characteristic polynomial depend continuously on the entries
of A. Therefore, for any hyperbolic equilibrium a small enough perturbation of the matrix will lead
to the eigenvalues that have the same sign of Reλ1,2. Which implies, by Theorem 16, that this new
system will be topologically equivalent to the original system. �

Introducing another term, I can say that a property about 2×2 matrices is generic if the set of ma-
trices possessing this property is dense and open in R4. It can be proved that hyperbolicity is a generic
property. I will not go into these details, but rephrase the previous as follows: almost all matrices
2× 2 are hyperbolic. This brings an important question: Do we really need to study non-hyperbolic
matrices and non-hyperbolic equilibria of linear systems? The point is that, in real applications the
parameters of the matrix are the data that we collect in our experiments and observations. These
data always have some noise in it, we never know it exactly. Therefore, only hyperbolic systems seem
to be observed in the real life. However, this is not the case. Very often, systems under investigation
may possess certain symmetries (such as conservation of energy). Another situation, which is more
important for our course, that all the system we study contain parameters, whose values we do not
know. It is therefore unavoidable that under a continuous parameter change the system matrix will
be non-hyperbolic, and at some point we will need to cross the boundary between topologically non
equivalent behaviors.

Taking into account the Jordan normal forms for 2× 2 matrices, I can consider the following three
parameter dependent matrices:

(a)

[
−1 0
0 µ

]
, (b)

[
µ1 1
µ2 µ1

]
, (c)

[
µ 1
−1 µ

]
.

These three matrices becomes non-hyperbolic when µ = 0 or µ1 = µ2 = 0. For example in the case
(a) when we perturb µ around zero the matrix with trA < 0 and detA < 0 becomes a matrix with
trA < 0 and detA > 0, i.e., a topological sink turns into a saddle (or vice verse). In the third
case I have the change from trA > 0 and detA > 0 to trA < 0 and detA > 0, i.e., a topological
sink becomes a topological source. In the case (b) the situation is more involved since I have two
parameters, and I will not discuss it here. To conclude, I say that for cases (a) and (c) it is enough
to have one parameter, and a bifurcation of codimension one occurs, whereas for the case (b) I face a
codimension two bifurcation.
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